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The SCF iteration is coupled with a finite difference Newton—Raphson algorithm to
soive the set of coupled second-order integrodifferential equations with split boundary
conditions which constitutes the atomic HF problem. In the new method the two-point
boundary conditions at » = 0 and r = o as well as the Lagrange multipliers are
incorporated into a large system of nonlinear algebraic equations which are solved
by means of a generalized Newton—Raphson iteration which converges rapidly and
efficiently. The need to estimate initial slopes of the radial functiocns and wvalues of
Lagrange multipliers has been completely eliminated. As an exampie a calculation of the
15228 open-shell configuration of Li is presented. Through the use of Richardson
extrapolation an accuracy of nine significant figures has been achieved. The new method
i3 easier to apply and more versatile than the conventional methods. Although only Lt
and Be have been attempted so far (each with complete success) the method can cer-
tzinly handile very large systems.

1. INTRODUCTION

Although there have been many advances in numerical analysis in recent years.
nearly ail commonly used computer programs for solving the atomic Hartree-Fock
(HF) equations [1-4] still basically employ the methods originally developed by
Hartree [5]. While the HF radial integrodifferential equation with associated
boundary conditions at » = 0 and oo is essentially a two-point boundary value
problem, the conventional methods treat it as a sequence of initial value preblems.

One of the most powerful numerical methods for solving two-point boundary-
value problems is the finite difference Newton—Raphson algorithm, originally
developed by Van Dine [6]. In the present work this algorithm is cmployed in
conjunction with the well known self-consistent field (SCF) iteration to solve the
atomic HF equations. The new method involves a number of distinct paris: {1} the
HF integrodifferential equations with split boundary conditions are approximated
by systems of finite-difference equations, (2) within a SCF iteration the system of
finite difference equations associated with each radial function is solved separately

81

Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.



82 CAYFORD, FIMPLE AND UNGER

and sequentially by means of a generalized Newton—Raphson iteration (GNRI)
[6], and (3) the usual SCF procedure is employed. The new method is most attrac-
tive in that it incorporates the split boundary conditions into the system of finite
difference equations and treats the Lagrange multipliers as an integral part of the
system rather than as adjuncts to the problem as in conventional methods.

The authors are aware of only one previous application of finite difference
techniques to the calculation of atomic wavefunctions. This is the numerical
solution of the two-dimensional S-limit Schrédinger equation for He by Winter,
Diestler, and McKoy [7]. In this calculation very large matrices were diagonalized
by conventional matrix eigenvalue techniques. From a practical point of view it is
difficult to see how this approach could be extended to larger systems.

In the following section the HF problem is outlined, and in Section 3 the finite
difference form of the atomic HF equations is derived. The basic algorithm to
solve these equations is outlined in Section 4 and further illustrated in Section 5 by
means of a specific example. Finally, in Section 6, some results are presented for
the 1s22s configuration of Li.

2. Tae Atomic HARTREE-FOCK PROBLEM

If the total wavefunction of an N-electron atom is approximated by the anti-
symmetric product of N single-electron spin-orbitals

¥ = (1) - du(V)), M
where
by = Ry (1) Y i) X755 o = 1,...,, N, 2)
and further, if we define new radial functions,
P(r) = rRy 1. (n), ©)

then the radial HF equations are a set of coupled integrodifferential equations of
the following form.

1 42 l(l + LU, +1) ,
[_Edr o +Y()+ ""‘]P"‘(’)
= CK(r) + 3 Ap d(x, B) Pﬁ(r), a=1,.,N, (4a)
B#a

where A(w, B) = 8(L1;) 6(m myg) 8(m, msﬁ), and for a single configuration,
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~dw . me
By = | Y)Y Vi) do,

and r. = min{r, #") and r., = max(r, #"). Because the radial functions are veal,
Agy = A,z . Equations (4) are to be solved subject to the following conditions:

boundary conditions:

P0) =P (0) =0, a = 1., &, {4b}
normalization conditions:
f PArdr=1, o= L., N, {4¢y
“Q

orthogonality conditions between radial functions associated with spin-
orbitals with the same angular and spin quantum numbers:

,m P(r) P(r)dr = 0 for all values of « and § such that B < « and
]
A(a, B) = 1. (4d)

In the standard methods of solving the system of equations {4) the SCF procedure
is employed, where each of the radial equations is numerically integrated in
sequence (x = 1,...,, N), with the Coulomb and exchange integrals Y, and X,
determined from previous SCF iterations. Each integration is performed as two
initial-value problems. An outward integration is started at a point near the nucleus,
while an inward integration is started at a large arbitrary radial value where it is
matched to an exponential “tail.” The inward and outward integrations are
required to match in value and slope at some arbitrary intermediate point. This
procedure requires estimates of the slope at the two starting points, quantitiss not
specified in the boundary conditions, as well as estimates of the values of the
multipliers A,;. The standard methods for the most part differ in their specific
procedures for translating a mismatch of the inward and outward integrations
into better estimates of the slopes and multipliers.
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3. FiNiTE DIFFERENCE ForM

In the present paper it is shown how the system of equations (4) can be treated
universally as true two-point boundary-value problems by means of finite-difference
techniques, and the conditions (4b), (4c), and (4d) can be treated as an integral
part of the system.

The first step is to translate (4) into finite difference form. But before proceeding
it is very advantageous to make a change of radial variable suggested by Boys and
Handy [8]

r
P T+ ar

(a > 0). %)

The range of the new variable is finite (0 to 1/a) and can be spanned by a finite
mesh of equally spaced points. Another advantage of the transformation (5) is that
a constant density of mesh points in p corresponds to a greater density in r in the
important region near the nucleus as opposed to the less important region far from
the nucleus.

In transforming the HF equations the following substitution is made instead of
that given by (3), as it has the advantage of still removing first derivatives when the
equations are expressed in p

Po(p) = pRuy1,(p)- ()

Under the transformation defined by (5) and (6) the HF equations become the
following:

[~ 1l z . _Yp) LL+D A
2 dp2 p(l — ap)3 (1 — ap)-l 2P2(1 _ ap)z (1 _ ap)4

- (—1)'(% + B;ﬂ Mg A(o, B — ap)™t Palp), o= L., N, (72)

] P(p)

where
477 l/a AV ’ ’
Vo) = X gy Bl [ P 8o ) '

and

4 [ie ’ ’ ’ ’
Xfp) = 3 Smne) 531 | B P Plp) | Pulp) Pole) 2alps )
8. vo

A

where

, P (1 —apoyt ,
g/\(P7 P) = (1 —p<ap )A ( P/\—I’—o1>) (1 —ap )_4
< >
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(%)
N

and
p<=min{p,p’)  and p, = max(p, o}
The conditions (4b), (4c), and (4d) transform to

boundary conditions:
I’ N
PO =P() =0 x=1..N
normalization conditions:
rlja , i . } PN
| Pp)1 —ap)ytdp =1, x= 1., N, {7}
M}
orthogonality conditions:

/a .
|, PLo) Pop)1 — apyt dp = 0,

for all values of « and 8 such that 8 < « and 4(s, §) = 1.

We now proceed to translate the new system of equations (7) into finite difference
form. The p axis between p = 0 and p = /¢ is divided by a mesh of A — 1
evenly spaced internal points so that the interval between poinis is £ = /Mg, The
following notation will be used.

op =kh,  k=0,., M, (22
P(pp) =PF a=1.,N; k=0..,M (85)

The first-order approximation for the second derivative (central difference quotieat)
is used. Explicitly at mesh point k&

d*p, 1 . .
® | (PRl 2Pk | PRiT) {9)
dp? o lZZ(sz ZPa + B ) )
The trapezoidal rule is used to approximate the integrals. This is entirely consistent
with the first-order approximation of the second derivative.
With these approximations the finite-difference HF equations are the following:
DS — (1 — akh)™ A, P,* — 7112 (PT - PE™Y — X P4 — akhy

- Z ‘)\NBA(ay B)(l - ak]’l)_4 PBk = J,

B#a

a=1,.,N; k=1,,M—1, (10a)
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where
1 Z I, + 1 .
= o\fo I — _4
D =y~ T —akhy T e — g T e Ak
M-1 i
= B* (P 5')2 ga'. ”’
; 2/\+1 oo ng g7 e
and
Xr= Y 8msm )—4—”—13 {2PkMi1P"P”g”“
a g Sy ftsg 2A Jr_l B B = x4t BBA o
where
ik pr ( —aghy* .,
& = (1 _ aplz)" q,\+1 (1 afh)

and p = min( j, k), ¢ = max(}j, k). In finite-difference form the conditions (7b-d)
become

boundary conditions:
PO =PM =0, a=1.,N, (10b)

normalization conditions:
M-1
hY (1 —ah)y (PP~ 1=0, a=1,.,N, (10¢)
j=1
orthogonality conditions:

M1

kY (1 — ajhy*PJjP# =0 for all values of « and § such that § < « and
i1
A2, By = 1. (10d)
The equations (10) are a set of algebraic equations in the unknowns P,* and A,

one equation for each unknown. It remains to describe a practical method for
solving this system.

4., METHOD OF SOLUTION

The unknowns of the finite difference HF equations (10) are the N(M + 1)
values P.* and the Lagrange multipliers A,z for 4(x, 8) = 1. The boundary con-
ditions (10b) can be substituted directly into (10a) for « = 1,..., N and k¥ = 1 and
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M — 1. In so doing we have reduced the order of our system of equations {and
unknowns) by 2N, and the two-point boundary conditions (10b) will be auto-
matically satisfied. The normalization and orthogonality conditions (10c and 104),
however, still remain as part of the system.

At this point we make a radical departure from conventionai methods of solution
whers the multipliers A,z are treated as parameters {(eigenvalues in the diagonal
representation), and reserved for special treatment. The simplicity of the present
method stems largely from the fact that we treat all of the unknowns, the P and
the A,g , on equal footing. To emphasize this point and to facilitate the analysis, it
is desirable to make a slight change in notation. We associate each multiplier
Ae{B < @) with the radial function P, (i.e., with the set of unknowns PF, & == 1,...,
M — 1), and to emphasize the equal footing we define P* = A, , P = A, 5.,
etc., one definition for the normalization condition and one for each of the ortho-
gonality conditions for which Ad(w, y) = 1, the number of these definitions
depending upon the specific case. We note in passing that these definitions have
nothing to do with the boundary conditions (10b). The P.M were discarded pre-
viously from the list of unknowns, and we merely are reusing the symbol here in a
different context.

In the revised notation equations (10a), (10¢), and {1Gd) are a system of equations
of the form

PP PR PR PR P PR P, PR =,
a=1,.,N; k=1,.,M,., {5

where the equations f*<™ = 0 are the finite difference equations (10a) for radial
function « at each internal mesh point k, and the equations f*=* =0 are the
normalization and orthogonality conditions associated with radial function c.
An orthogonality condition between two radial functions, 8 and y say. is ounly
included once in the set (11) and is associated with the radial function
8 == max{f, y). The number of equations and the number of unknowns associated
with each value of o in (11) will depend upon the specific case, and it is not easy o
write down a general expression in terms of N and M. In every case, however, the
number of equations is equal to the number of unknowns.

The equations (11) are a set of nonlinear algebraic equations in the variables 2%
The problem is to find the roots of these equations, i.e., to determine a value for
each of the independent variables P,* such that each of the functions f* is zero
within a given tolerance. In order to solve this problem we introduce two com-
plimentary iterative procedures: (1) the well-known SCF iteration and (2} a
generalized Newton—Raphson iteration (GNRI).

We proceed as follows. We order the equations {11} in increasing values of a
and &, grouping all equations with the same value of « together in subsets. Usually
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we start with the innermost shell (¢ = 1) and proceed outward, although the op-
timum ordering of radial functions with respect to SCF convergence varies from
case to case. Within a SCF iteration we solve each of the subsets of equations (11)
associated with each radial function (value of «) separately and in a sequence
a =1, 2,..., N by means of the GNRI to be described. In the usual SCF manner,
for a given value of « in the sequence, the unknowns Pg(8 £ a;j = 1,..., M - 1,...)
in the functions f,* are treated as constants and are fixed at their respective values
as determined in the preceding SCF iteration or in the solution of the subset § in
the present SCF iteration, whichever has occurred later. The dependence of the
functions f.* on the variables Py(8 = «) is due to Coulomb and exchange integrals,
off-diagonal multiplier terms, and orthogonality conditions. The functions f*<¥,
corresponding to the finite difference equations (10a), also depend upon the
variables P,/ in two ways: explicitly (j =k — Lk, k+ 1, M, M + 1,..) and
implicitly through the exchange integral X, *(j = 1,..., M — 1). It is most advan-
tageous to treat the P,/ in the exchange integral as constants in the same manner as
the Py(B # «) while permitting the explicit dependence to vary within a SCF
iteration. The P, appearing in the functions f¥>¥, corresponding to normalization
and orthogonality conditions (10c) and (10d), are also allowed to vary. This SCF
procedure is similar to those commonly employed, except that the description is
in terms of the finite difference variables.

‘We now address ourselves to the task of solving the subsets of equations (11) for
each value of «. Due to the SCF procedure just outlined we now only consider the
functional dependence of the f,* on the variables PJ/(j = 1,..., M...) with the
other variables treated as given constants. The solution is obtained by means of a
generalized Newton—Raphson iteration. Let P = (P,1, P,2,....)" be a solution
vector of the values of the variables P,* evaluated at the nth GNRI. Also we define
F"™ = (£4 f.2..)™ to be a vector of the function values f,*(P{™) evaluated at the
nth GNRI. At the (z -+ 1)th iteration the solution vector is given in terms of values
at the nth iteration by

Pé-n—H) _ Po((n) - (J(n))—lFefn)’ (12)

where the matrix elements of the Jacobian matrix J¢* are given by

= g,&; | (13)

See [6] for a derivation of the iteration (12). Kantorovich and Akilov [9] give the
general conditions under which such an iteration is convergent.
The iteration (12) is repeated until

max(] £*(P™)]) < tolerance, (14)
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since when F® = 0 the problem is solved exactly for the given subset a. The
starting vector P = (P,}, P,2,...)'” contains the respective values of the variables
P as determined in the previous SCF iteration. The question of appropriate
starting vectors P in the first SCF iteration will be deferred until we discuss a
specific case.

The unit operation of the method is the sclution of the GNRI equation ( !2 .
Because of the SCF procedure and the particular ordering and grouping of Egs. {{
just described, the Jacobian matrices (13) are always in a special nearly tmdlag@aai
form which, by means of a partitioning, enables a rapid solution of {12} (see
Appendix).

The details of this SCF-GNRI algorithm will be made clearer by applicatior. ‘¢
a specific case.

5. APPLICATION TO THE 15225 CONFIGURATION OF Li

This case has been chosen because it is the simplest example which illustrates the
algorithm in full. Let P, and P, be the two Is radial functions and P, the 2s radial
function. Usually P, and P, are taken to be equal, but there is actually no physical
or mathematical reason for this. Since the spin-orbitals 1 and 2 are automatically
orthogonal because of spin, and since we assume the spin for 3 to be the same &3
that for 1, only an orthogonality condition on P; and Py is required. Let A;y = P %,
Agy = P,M, dgy = P3M, and Ag = PY*.. To notationally separate those Vanaoles
which are to take part in the present GNRI from those whose values are to be held
constant, let us denote the latter by Q instead of P. So, for those variables 1o be
held constant, P,* — O *.

Writing out the system of equations (10) for this special case (Z = 3), including
the Coulomb and exchange integrals Y,* and X_* explicitly, we have the following:

_ 1 3 S e e .y
ft = [—F— ™ T = P + (I — akh)™ Z (Gy) + (@)D — i)
f
(L= agh) a“q”) — (1 — akhiy™ PM] P — = (PE + P}
M1 {1-— aah)
— Q@ (1 — akhy Z 070/l — gjhy™ "
0N — k)0 =0, ko= 1., M1, (15)

M1

M= Y (1 —ah)y"(PoP —1/h =0, (16)
i=1
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7 = b~ Ty + 0~ B (@ + @

s (1 — ajy-+ &L q"‘”’) (1 — akh)™ P.zM] P,¥

5}1—2(1’;‘—1 =PIy — 0, k=1,.,M—1,

£ =Y (0 — aly P — 1fh ~ 0,
” 1 3 ~ M—3 o )
fab = [172 — T —ayE T~ akh Zl ()% + (22

x (1 — gyt il“—q“q@ — (1 — akiy* PM] Py}

h2 (P37 + P5™)
M—1 —
— 01 — akh)™ Y. Q0:/(1 — ajhy~* g__ng_hl
j=1
_ P£l+1(1 _ akh)_'l Qlk = 0’ k= 1,..., M — 19

M-1 . ’ . 1
fi =Y, (L~ @)y (Pyy — 5 =0,
i=1

M+1 z (1 — ajhy* 0Py = 0,

where ¢ = max(j, k).

17

(18)

(19)

20)

@n

A SCF iteration consists of first using the GNRI to solve (15) and (16) with all
the Q’s held constant at their respective values from the previous SCF iteration.
Next, (17) and (18) are solved in the same manner. Finally (19), (20), and (21) are
solved, but this time the Q’s in the last terms of Eqs. (19) and (21) are held constant
at their respective values from the solution of (15) and (16) in the present SCF
iteration instead of the preceding SCF iteration. This procedure results in all spin-
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orbitals being orthonormal after every SCF iteration and seems to aid convergence.
The Jacobian matrix for the system of Egs. (19), (20}, and (1) is given in the
appendix.

It remains only to define a starting vector for the algorithm. If the terms involving
the Coulomb and exchange integrals as well as the off-diagonal multipliers are
ignored the system of finite difference equations (15), (17), and (19) corresponds
physicaliy to three noninteracting electrons in the field of the bare nucleus. The
solution corresponds to hydrogenic wavefunctions (Z = 2} expressed as a function
of p. For the starting vector, therefore, the P;* and P {(k =1,.., M — 1) are
both set egual to the lowest hydrogenic eigenfunctions in finite difference form
and P;% and P, equal to the corresponding eigenvaiue. Similarly the
Pl = 1,..., M) are set equal to the first excited state. The starting values for the
off-diagonal multipliers P*>* are zero.

In the event that difficulty is encountered in converging from the hydrogenic
solutions, one can multiply the ignored terms by a tracking parameter € and increase
e in several steps from G to 1 with the converged solution for one value of € serving
as the starting vector for the next. In the Li calculation which follows one such
intermediate step was required (¢ = 0, 0.5, 1.0). Also solutions for one atom can
be tracked into solutions for a larger atom by means of turning on the additional
Coulomb and exchange interactions in a number of steps with the additional
orbitals starting from appropriate hydrogenic functions.

6. RESULTS FOR THE 15225 CONFIGURATION OF Li

Continuing with the Li example we present results for the iotal HF energy and
the Lagrange multipliers. The result for the HF energy appears in Table [ where
the Richardson /?-extrapolation procedure [10] has been carried out to determine
the limiting value of the HF energy as 2 — 0. The various extrapolants are arranged
in a Neville table {11} where the accuracy of the extrapolants improves from left
to right, and consequently the element on the far right of the table is the most
accurate approximation. The other elements are useful in giving an estimate of the
accuracy. The results for Ay, , Ay, and Ay, are similarly presented.

For these double-precision calculations the tolerance for the GNRI (see Eq. {(14)}
was set at 10, Quadratic convergence is obtained. In a typical sequence of
generalized Newton—Raphson iterations the convergence criterion (i4) fakes on
values of the order of 10° 1073, 107, and 102 The SCF convergence criterion
used was that the largest absolute change in any of the P,* from one SCF iteraticn
to the next be less than 10—

With 105 intervals in the mesh the converged value of Ay turns out 1o be
—0.5306684623 x 10-1°, Since this value is of the order of the tolerance of the
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TABLE I

Neville Tables for Hartree—Fock Energy and A Multipliers for Li

HF energy®
M = number h = mesh?
of intervals spacing Oth order st order 2nd order 3rd order
in mesh = 1/(aM) extrapolant extrapolant extrapolant extrapolant
45 0.02002002002 —7.432260308
—7.432753021
65 0.01386001386 —7.432516868 —7.432750941
—7.432751524 —7.432750918
85 0.01059883413 —7.432614303 7432751153 —7.432750922
105 0.00858000858 —7.432661471 ’ )
Ay
45 0.02002002002 —2.484760980
—2.486676948
65 0.01386001386 —2.485758644 —2.486675785
—2.486676111 —2.486675610
85 0.01059883413 —2.486139599 2 486675822 —2.486675642
105 0.00858000858 —2.486324420 ) -
Ass
45 0.02002002002 —2.466734377
—2.468701023
65 0.01386001386 —2.467758430 —2.468699916
—2.468700227 —2.468699720
85 0.01059883413 —2.468149487 2 468699936 —2.468699755
105 0.00858000858 —2.468339211 )
/\33
5 .02 02! —0.196935649:
45 0.02002002002 —0.1 35_ 4 —0.1963669527
65 0.01386001386 —0.1966395233 0.1963671599 —0.1963672406 0.1963672172
85 0.01059883413 —0.1965264312 ) —0.1963672212 ) -
—0.1963671979
105 0.00858000858 —0.1964715481

¢ HF energy is in a.u.
b a = 1.11 (sece Eq. (5)).
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calculation, and since roundoff error is also of this order, an accurate A%-exira-
polation is not possible.

It is well known that with the two 1s radial functions P; and P, not constrained
to be equal, the HF equations are invariant under a unitary transformation among
spin-orbitais of the same spin (in this case P; and P;) and furthermore, since the
A matrix is Hermitian, there exists a representatior in which it is diagonal. It is
clear that within the given tolerance the algorithm has converged upon this diagonal
solution, That this is certainly the case is evident from the fact that when the set of
finite difference equations (15)~(21) are satisfied within the tolerance of 10-%° we
have an accurate solution of the HF equations. But as a check a second caleuiation
was performed where Ay was assumed to be zero. For this calculation the term
containing P¥™ in (19) (P! corresponds to Ay), as well as the crthogonality
condition between P, and P, , Eq. (21), were eliminated from the system. P; and £,
still turn out to be orthogonal without the constraint (21) because of the Hermitian
property of the HF equations in the diagonal representation. The results of the two
calculations are identical within the given tolerance.

The fact that the solution of the HF equations is unique only within a unitary
transformation can lead to numerical instabilities with conventional methods of
solution. For this reason one is usually content to assume the diagonal representa-
tion {even in cases where it does not legitimately exist, e.g. open shells with two
electrons of opposite spin in each orbital). We note that in the present calculaticn
no such numerical instabilities occurred, even though the solution was not
unique.

It might be asked if the solution is not unique why did the algorithin converge
on the particular diagonal solution? We note that the GNRI works on one radial
function at a time, holding the others constant, and therefore at each stage in 2
SCF iteration the solution is unique. Also the results of one SCF iteration uniguely
determine the results of the next (within tolerance). Thus, the only question is
whether the lack of a unique solution causes the SCF sequence to diverge, and
we see at least in the present calculation that it does not. Which one of the non-
unigue solutions is finally converged upon is determined by the starting approxima-
tion. In the present calculation Ay, was started at zere, and within the given tolerance
it remained there.

The method certainly does not depend upon including the nondiagonal
multipliers and the associated orthogonality conditions in the system of finite
difference equations. They have been included in the Li example only to present
the algorithm in full generality. All that is required is that the number of finite-
difference equations must equal the number of unknowns P.*.

Finally we give an indication of the computing time requirements for the method.
On an IBM 360/44 computer in double precision for Li with 85 intervals in the
mesh, .36 sec were required per spin-orbital per SCF iteration. Starting from
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hydrogenic orbitals 17 SCF iterations were required to achieve convergence to a
tolerance of 1071, independent of the number of mesh points in the range 45-105.
It is difficult to compare with other methods since this information is not available
in the literature for our particular example.

It should be noted that once a solution has been obtained for one mesh spacing,
solutions for other mesh spacings can be obtained rapidly in one or two iterations
from a linearly interpolated starting vector, so the Richardson extrapolation
process does not require very much extra computing time. Also the use of accelera-
tion parameters to improve SCF convergence can be incorporated into the
method.

Besides the calculation of the 1s22s configuration of Li presented, calculations of
the excited 1s%2p, 15%3s, 1s23p, and 1s23d configurations have been performed.
Also a calculation of the closed-shell 1522s% configuration of Be in the diagonal
representation has been performed.

7. CONCLUSIONS

The GNRI in conjunction with the SCF iteration is a relatively simple and
efficient method for obtaining accurate numerical solutions of the atomic HF
equations. The computer storage requirements are no greater than conventional
methods. Although calculations have been performed to date only for Li and Be,
there is no reason why the algorithm could not compete favorably with conventional
methods in handling large atoms.

The chief advantage of the present finite difference Newton~Raphson algorithm
over conventional methods lies in the treatment of the split boundary conditions.
Where conventional methods incorporate rather artful procedures for translating
a mismatch in the inward and outward integrations into new estimates of the
values of multipliers and initial slopes, the present algorithm includes the split
boundary conditions and the multipliers in the system of finite-difference equations,
and the problem is solved universally rather than by a combersome process of
fitting together the various parts. Consequently the uninitiated should find the
present algorithm much easier to apply.

APPENDIX

As an illustration of the form of the Jacobian matrix encountered using SCF
techniques we give the example of the Jacobian matrix for the 2s orbital of Li as
derived from Egs. (19), (20), and (21).
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AV

T =35 (A1)

1 3 M=t )
= e - —— — ~4 e N2 { [AvAY
Th, T kh(U = akh)® + (1 — akh) 2:1 (G + (2.5

% (1 — alh)s il—"‘a‘ﬂh—) — (1 — akhy P,

— ~%, k—jl=1 Jjk=1.,M—1,

= —{1 — akhy* Pj, =M, k=1,.,M—1,

= 2{{ —ghy? P, k=M, j=1,.,M—1,

= —(1 — akh)™* Q/*, j=M-+1, k=1.,M-—1,

= (1 —agh) g/, k=M+1, j=1,.,M—1,

= (, for all other &, j not included in any of the above

In matrix form J is the following,

—M-1— > 2 «

/ e I\\,\ 1?
J = R j {A-2}

a

o]
o] O/

All Jacobian matrices encountered are of this form, though the number of nonzero
columns and rows changes, depending on the number of orthogonality conditions
associated with the spin-orbital under consideration.

We will outline the rapid solution of the GNRI equation (12) that is possible if
J is of the form given by (A-2).

First, omitting the subscript «, let us rewrite Eq. (12} as

— N & e

J®IA = F(n)’

k)
v
L

S’

where the vector A is defined by

A = P _ pl+l)

581f15/1-7
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Once (A-3) is solved for A, the vector P+D is directly obtained since P is already
known. Next, we perform the following partitions.

[A-4)

where 4 is an (M — 1) X (M — 1) tridiagonal matrix, B is a general (M — 1) X 2
matrix and Cis a general 2 X (M — 1) matrix. Furthermore, we let

A= 21) (A-5)
and
o (), ws

where A, and F, are vectors of length M — 1 while A, and F, are vectors of
length 2. Equation A-3 now becomes the following:

(2 0)a) = (&) (D

or equivalently it can be expressed as two matrix equations as follows:
CA, =F,, (A-B)
AA; + BA, = F, . (A-9)
From (A-8) and (A-9) we obtain directly that

CA-'BA, = CA'F, — F, (A-10)
and
AA, = F; — BA,. (A-11)

Equations (A-10) and (A-11) are solved in the following way. First, we obtain
A~1B by defining the following relationships [12]:

Wy=A7iAy; Wy= Ay — AjaWi)  Ajja, J=2. M—1,  (A-12)

Gy = Aﬁl By, ; Gy = (dj; — Aj;aW;i)(Bia — A354Gj-10)s
j=2,... M —1; a=1,2, (A-13)
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which make possible the recursive computation of the components of 415,

{A'B)pr10 = Gricra s (AﬁiB)j,a = Gy~ W47 B0,
e x =1, 2. {A-14)

j= J
in a similar fashion A='F, in (A-10) is also obtained. By inverting the 2 X 2 matrix
CA-'B and multiplying (A-10) through by (CA~'B)'. we obtain A, . Finally by
the same technique that we used to obtain A~'B, we obtain 4,[= 4XF, — BA,),,
and the problem is solved. Note that the matrix 4 is not actually inverted at any
stage during the solution. Also the number of calculations and stcrage locations
for this method of solving Eq. (12) are both proportional to A + 1. Thus, it is
clear how the above partitions greatly reduce the time and storage requirements,
for without them J would have to be treated as a general square matrix of diﬁ"CE’k
sion M -+ 1. The time required for its inversion would then be proportional to
(M + 1%, and (M + 1)® storage locations would be required.
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