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A Finite Difference Newton-Raphson Solution 

of the Atomic Hartree-Fock Probtem 

Jim I(. CAYFORD, W. R. FIMPLF, AND D. G. UUGER 

The SCF iteration is coupled with a finite difference Newton-Raphson algorithm to 
soive the set of coupled second-order integrodifferential equations with split boundary 
conditions which constitutes the atomic HF problem. In the new method the two-point 
boundary conditions at r = 0 and T = 30 as well as the Lagrange multipliers are 

incorporated into a large system of nonlinear algebraic equations which are solved 
by means of a generalized Newton-Raphson iteration which converges rapidly and 
efficiently. The need to estimate initial slopes of the radial functions and vaines of 
Lagrange multipliers has been completely etiminated. As an exampk a calcuiation of the 
lY2.S open-shell configuration of Li is presented. Through the use of Richardson 
extrapolation an accuracy of nine significant figures has been achieved. The new method 
is easier to apply and more versatile than the conventional methods. Although only Lt 
and Be have been attempted so far (each witb complete success) the method can c’;3r- 
tain!y handle very large systems, 

1. INTRODUCTION 

Although there have been many advances in numerical analysis in recent years. 
nearly ail commonly used computer programs for solving the atomic Hartree-Fock 
(HF) equations [l-4] still basically employ the methods originally developed by 
Hartree [5]. While the HF radial integrodifferential equation with associated 
boundary conditions at r : 0 and cx) is essentially a two-point boundary valnc 
problem, the conventional methods treat it as a sequence of initial value problems 

One of the most powerful numerical methods for solving two-point boundary- 
value problems is the finite difference Newton-Raphson algorithm, originally 
developed by Van Dine [6]. In the present work this ai:gorithm is employed in 
conjunction with the well known self-consistent field (SCF) iteration to solve the 
atomic HF equations. The new method involves a number of distinct parts: ii) the 
IHF integrodifferential equations with split boundary conditions are approximated 
by systems of finite-difference equations, (2) within a SCF iteration the system of 
finite difference equations associated with each radial function is solved separately 
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and sequentially by means of a generalized Newton-Raphson iteration (GNRI) 
[6], and (3) the usual SCF procedure is employed. The new method is most attrac- 
tive in that it incorporates the split boundary conditions into the system of finite 
difference equations and treats the Lagrange multipliers as an integral part of the 
system rather than as adjuncts to the problem as in conventional methods. 

The authors are aware of only one previous application of finite difference 
techniques to the calculation of atomic wavefunctions. This is the numerical 
solution of the two-dimensional S-limit Schrijdinger equation for He by Winter, 
Diestler, and McKay [7]. In this calculation very large matrices were diagonalized 
by conventional matrix eigenvalue techniques. From a practical point of view it is 
difficult to see how this approach could be extended to larger systems. 

In the following section the HF problem is outlined, and in Section 3 the finite 
difference form of the atomic HF equations is derived. The basic algorithm to 
solve these equations is outlined in Section 4 and further illustrated in Section 5 by 
means of a specific example. Finally, in Section 6, some results are presented for 
the ls”2s configuration of Li. 

2. THE ATOMIC HARTREE-FOCK PROBLEM 

If the total wavefunction of an N-electron atom is approximated by the anti- 
symmetric product of N single-electron spin-orbitals 

YJ = 4+,(l) .-* $NWN, (1) 
where 

$L = &&(f-> yr:w XI;>, a = l,..., N, (2) 

and further, if we define new radial functions, 

P*(r) = &q&w, (3) 

then the radial HF equations are a set of coupled integrodifferential equations of 
the following form. 

= X(r) + c 4204% PI PO(r), cd = l,..., N, 
BZU 

where d(a, /3) = 6(Z,Z,) 6( m,m,) S(m,enz,,J and for a single configuration, 

(44 
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and f’< = min(r, 7’) and I’> = max(r, r’). Because the radial functions are real, 
h,, = X,, . Equations (4) are to be solved subject to the following conditions: 

boundary conditions: 

normalization conditions: 

orthogonality conditions between radial functions associated v~ith sn!n- 
orbitals with the same angular and spin quantum numbers: 

Jo= P=(r) P,(P) dr = 0 for all values of E and /3 such that /3 < o: and 

4(z, p> = 1. (&j) 

In the standard methods of solving the system of equ&ions (4) the SCF procedure 
is employed, where each of the radial equations is numerically integrated m 
sequence (a = l,..,, N), with the Coulomb and exchange integrals Y3 and X> 
determined from previous SCF iterations. Each integration is performed as two 
initial-value problems. An outward integration is started at a point near the nucleus, 
while an inward integration is started at a large arbitrary radial value where it is 
matched to an exponential “tail.” The inward and outward integrations are 
required to match in value and slope at some arbitrary intermediate point. This 
procedure requires estimates of the slope at the tivo starting points, quantities not 
specified in the boundary conditions, as well as estimates of rhe values of the 
multipliers X,, . The standard methods for the most part differ in their specitk 
procedures for translating a mismatch of the inward and outward integrations 
into better estimates of the slopes and multipliers. 
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3. FINITE DIFFERENCE FORM 

In the present paper it is shown how the system of equations (4) can be treated 
universally as true two-point boundary-value problems by means of finite-difference 
techniques, and the conditions (4b), (4c), and (4d) can be treated as an integral 
part of the system. 

The first step is to translate (4) into finite difference form. But before proceeding 
it is very advantageous to make a change of radial variable suggested by Boys and 
Handy [8] 

r 
‘= 1 +ar’ 

(a > 0). (5) 

The range of the new variable is finite (0 to l/a) and can be spanned by a finite 
mesh of equally spaced points. Another advantage of the transformation (5) is that 
a constant density of mesh points in p corresponds to a greater density in r in the 
important region near the nucleus as opposed to the less important region far from 
the nucleus. 

In transforming the HF equations the following substitution is made instead of 
that given by (3), as it has the advantage of still removing first derivatives when the 
equations are expressed in p 

Pa(P) = P&&p). 

Under the transformation defined by (5) and (6) 
following: 

(6) 

the HF equations become the 

[ 
1 d2 Z L& + 1) x ---- 
2 dp” ~(1 - ap)” 

+ (1 ‘“x* + 2p2(1 - ap)” - (1 -?~p)~ 1 Pa(P) 

where 

and 

UP> 

where 

UP> = ,;, & &r2& 1”’ PBCP’Y gdp, P’) dp’, 
0 

q c Wps,) 

3,l.u 
$$- I Bo,n I2 PE(P> 1,“” f%p’> f’dp’> a@, P’> dp’, 

(1 -p;;Y+l (1 _ ap’)-” 
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and 
fk = min (P, P’> and p, = max (p, p’).. 

The conditions (4b), (4c), and (4d) transform to 

boundary conditions: 

normalization conditions: 

rlia 
) P&3)2(1 - up)-” dp = 1) 
‘0 

orthogonality conditions: 

r 
I/& 

P,(p) P&)(1 - ap)-’ dp = 0, 
‘0 

(7d) 

for all values of 5y and p such that /? < CI and d (2, /!I) = 1. 
We now proceed to translate the new system of equations (7) into finite difference 

form. The p axis between p = 0 and p = I/a is divided by a mesh of M - Z 
evenly spaced internal points so that the interval between points is 11 = i/Ma. The 
following notation will be used. 

Pr = kh, k = O,..., MT @ii) 

PhJ = Pe7’, ‘2 = i.~l) 1 iv; k = o,.,., M, (8bj 

The first-order approximation for the second derivative (central. difference quot.&t) 
is used. Explicitly at mesh point k 

The trapezoidal rule is used to approximate the integrals. This is entirely consistent 
with the first-order approximation of the second derivative. 

With these approximations the finite-difference HF equations are the fool!osving: 

[aDaB - (1 - akh)-” A,,] P,” - & (I’-” f P;+l) - &‘(I -- ah’7)-* 

- C A,, d(a, /3)(1 - aklz)-4 PBk = 0, 
l3#& 

131 = l,..., N; k=I )*~~P A!! - 1, ifOa\ \ r 
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where 

D 
1 z 

(Y ” = F - k,i@ - a,l&)3 + 
UL + 1) 

ZkW(1 - akh)” 
+ Y,“(l - aklz)-4, 

and 

where 

d" = (1 P;p,l)* 

(1 - aqlz)h+l 
@+l (1 - ajh)-A 

and p = min(j, k); CJ = max(j, k). In finite-difference form the conditions (7b-d) 
become 

boundary conditions: 

P,” = P,M = 0, CL = I,..., N, (lob) 

normalization conditions: 

M-l 

12 c (1 - L$z)-“(Pa~>” - 1 = 0, a = l,..., N, ww 
j=l 

orthogonality conditions: 

‘44-l 

h 2 (1 - ajh)-z P,iPpj = 0 for all values of 01 and p such that p < 01 and 
i=l 

A($ p) = 1. (104 

The equations (10) are a set of algebraic equations in the unknowns Pu2 and h,, , 
one equation for each unknown. It remains to describe a practical method for 
solving this system. 

4. METHOD OF SOLUTION 

The unknowns of the finite difference I-IF equations (10) are the N(M + 1) 
values Ptik and the Lagrange multipliers A,, for O(a, p) = 1. The boundary con- 
ditions (lob) can be substituted directly into (lOa) for a! = I,..., N and k = 1 and 
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h4 - 1. In so doing we have reduced the order of our system of equations (and. 
unknowns) by 2N, and the two-point boundary conditions (lOb) will be a.uto- 
matically satisfied. The normalization and orthogonality conditions (10~ and IOd>, 
however, still remain as part of the system. 

At this point we make a radical departure from conventionai methods of soiution 
where the multipliers X,, are treated as parameters (eigenvalues in the diagonal 
representation), and reserved for special treatment, The simphcity of the present 
method stems largely from the fact that we treat all of the unknowns, the A!‘,” and 
the A,, , on equal footing. To emphasize this point and to facihtate the analysi.s, it 
is desirable to make a slight change in notation. We associate each multipher 
A,,@ i< a) with the radial function P, (i.e., with the set of unknowns Put’, k = I,.,., 
M - I), and to emphasize the equal footing we define LF’~J’~ -= A,,% ) Pf+r = .& ?*.~, 
etc., one definition for the normalization condition and one for each of the ortho- 
gonality conditions for which A(oI, y) = I, the number of these definitions 
depending upon the specific case. We note in passing that these definitions have 
ncthing to do with the boundary conditions (lob). Tne FQbr were discarded pre- 
ViousPy from the list of unknowns, and we merely are reusing the symbol here in a 
different context. 

In the revised notation equations (lOa), (~OC), and (ZOd) are a system of equations 
of the fmm 

,,fayP,l, P,‘)... J P,l, PiZ,. . .;. . . ; PaI, Pa”,. .;. .; P,‘, E,2,..>) = 0, 

u = I,..., N; k = l,..., h!f )...) (i I) 

where the equations f 5<M = 0 are the finite difference equations (1Oaj For radial 
function 01 at each internal mesh point k, and the equations ft>-” = 0 are the 
normalization and orthogonal&y conditions associated with radial function c. 
An orthogonahty condition between two radial functions, /3 and y say, is only 
included once in the set (11) and is associated with the radiai ftm:ctios 
6 = max(/3, y). The number of equations and the number of unknowns associated 
with each value of x in (11) will depend upon the specific case, and it is not easy to 
write down a general expression in terms of N and h/i. En every case, however. the 
number of equations is equal to the number of unknowns. 

The equations (II) are a set of nonlinear algebraic equations in the variables F2”. 
The problem is to find the roots of these equations, i.e., to determine a vaiue for 
each of the independent variables P,” such that each of the functions ,c” is zero 
within a given tolerance. In order to solve this problem we introduce two cem- 
phmentary iterative procedures: (1) the weil-known SCF iteration and (2) a 
generalized Newton-Raphson iteration (GNRI), 

We proceed as follows. We order the equations (11) in increasing values of a 
and k, grouping all equations with the same value of a: together in subsets. Usualiy 
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we start with the innermost shell (a = 1) and proceed outward, although the op- 
timum ordering of radial functions with respect to SCF convergence varies from 
case to case. Within a SCF iteration we solve each of the subsets of equations (11) 
associated with each radial function (value of a) separately and in a sequence 
a = 1, 2,..., N by means of the GNRI to be described. In the usual SCF manner, 
for a given value of a! in the sequence, the unknowns P# i: m; j = I,..., M- l,...) 
in the functions fti” are treated as constants and are fixed at their respective values 
as determined in the preceding SCF iteration or in the solution of the subset /3 in 
the present SCF iteration, whichever has occurred later. The dependence of the 
functionsf,” on the variables P&p f a) is due to Coulomb and exchange integrals, 
off-diagonal multiplier terms, and orthogonality conditions. The functions f t<Iw, 
corresponding to the finite difference equations (lOa), also depend upon the 
variables P,j in two ways: explicitly (j = k - 1, k, k + 1, M, M + l,...) and 
implicitly through the exchange integral Xak(j = l,..., M - 1). It is most advan- 
tageous to treat the P,f in the exchange integral as constants in the same manner as 
the P&p f a) while permitting the explicit dependence to vary within a SCF 
iteration. The P,j appearing in the functions f taM, corresponding to normalization 
and orthogonality conditions (10~) and (lOd), are also allowed to vary. This SCF 
procedure is similar to those commonly employed, except that the description is 
in terms of the finite difference variables. 

We now address ourselves to the task of solving the subsets of equations (I 1) for 
each value of oi. Due to the SCF procedure just outlined we now only consider the 
functional dependence of the h” on the variables P,j(j = l,..., M...) with the 
other variables treated as given constants. The solution is obtained by means of a 
generalized Newton-Raphson iteration. Let Py) = (Poll, Pa’Z,...)(n) be a solution 
vector of the values of the variables P,” evaluated at the rzth GNRL Also we define 
FF’ E (full fEZ,...)tn) to be a vector of the function values fU”(Ph”‘) evaluated at the 
nth GNRI. At the (n + 1)th iteration the solution vector is given in terms of values 
at the nth iteration by 

ph+1) = p'n' 
01 oi 

- (J(,))-1 F,'"', 

where the matrix elements of the Jacobian matrix Yn) are given by 

(13) 

See [6] for a derivation of the iteration (12). Kantorovich and Akilov [9] give the 
general conditions under which such an iteration is convergent. 

The iteration (12) is repeated until 

max( j f k(P(n’)l) < OL oi tolerance , (14) 



FINITE DIFFERENCE HARTREE-FOCK 83 

since when I?“) = 0 the problem is solved exactly for the given subset cr. TBLe 
starting vector PLQ’ = (Pal, Paz,...)(O) contains the respective values of th.e variables 
P,” as determined in the previous SCF iteration. The question of appropriate 
starting vectors PLO’ in the first SCF iteration will be deferred until we discuss a 
specilk case. 

The unit operation of the method is the solution of the GNRI equation (12). 
Because of the SCF procedure and the particular ordering and grouping of Eqs. (11) 
just described, the Jacobian matrices (13) are always in a special nearly tridiagonal 
form which, by means of a partitioning, enables a rapid solution of (12) (see 
Appendix). 

The details of this SCF-GNRI algorithm will be made clearer by application r,o 
a specificcase. 

5. APPLICATION TO THE 1~~2s CONFIGURATION OF Li 

This case has been chosen because it is the simplest example which illustrates rh.e 
algorithm in full. Let P, and P, be the two Is radial functions and Pa the 2s radial 
function. Usually P, and P, are taken to be equal, but there is actually no physical 
or mathematical reason for this. Since the spin-or’oitals 1 and 2 are autornat~~a~l~ 
orthogonal because of spin, and since we assume the spin for 3 to be the same as 
that for 1) only an orthogonality condition on PI and P, is required. Let An1 = Pr5!; 
A23 = P. IQ h 2 3 33 = P QM, and A,, = P3 AH To notationally separate those variables . 
which are to take part in the present GNRI from those whose values are to be held 
constant, let us denote the latter by Q instead of P. So, for those variables to be 
held constant, PaL + QEk. 

Writing out the system of equations (IO) for this special case (Z = 3)? including 
the Coulomb and exchange integrals YEk and /U,” ex.plicitly, we have the following: 

M-l 
fl” = 3.yl (1 - ujlz)-“(Pj)” - l/l2 = 0, 
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h” = [$ - k/2(1 3 akh)3 
M-l 

+ (1 - ukh-" 1 ((Qli)" + (Q#) 
f-1 

x (1 - ajh)-” 
(1 - aqh) 

4 - (1 - &2)-J &M] P,‘: 

- & (P;-l+ p;+> = 0, k = I,..., M - 1, 

M-l 

p = c (1 - ajh)-J(P,i)Z - l/l? = 0, 
i=l 

f3k = [& - 3 
M-l 

kh(l - akh)3 + (1 - akh)F4 1 ((Qlj)’ + (Qj)“) 
j=l 

x (1 - aji)-” 
(l -quyh) - (l 

- & (P,“-” + P,““> 

M-l 

- elk<1 - akh)-” c QJQKI 
j=l 

- P,Mfl(l - akh-’ Q,” = 0, 

M-1 

f3M = c (1 - ujh)-*(P,y - ; = 0, 
j-1 

M-l 
jy+1 = zl (1 - aj1)-” QljP,’ = 0, 

- akh)-” PsM 
I 

Psk 

ajh)-B (1 - aqh) 
4 

k = l,..., M - 1, 

(17) 

(18) 

(19) 

(20) 

(21) 

where q = max(j, k). 
A SCF iteration consists of first using the GNRI to solve (15) and (16) with all 

the Q’s held constant at their respective values from the previous SCF iteration. 
Next, (17) and (18) are solved in the same manner. Finally (19), (20), and (21) are 
solved, but this time the Q’s in the last terms of Eqs. (19) and (21) are held constant 
at their respective values from the solution of (15) and (16) in the present SCF 
iteration instead of the preceding SCF iteration. This procedure results in all spin- 
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orbirals being orthonormal after every SCF iteration and seems to aid convergen.ce. 
The Jacobian matrix for the system of Eqs. (19). (,I%), and (21) is given in the 
appendix. 

It remains only to define a starting vector for the algorithm. If the terms involvmg 
the Coulomb and exchange integrals as well as the off-diagonal multipliers are 
ignored the system of finite difference equations (15), (!7), and (E9) corresponds 
physically to three noninteracting electrons in the held of the bare nucleus. The 
solution corresponds to hydrogenic wavefunctions (Z = 3) expressed as a ftinc’hion 
of $~ For the starting vector, therefore, the PI’- and P$ (k = :,..*, M - 1) are 
both set equal to the lowest hydrogenic eigenhncrions in finite 2iEerence form 
and pl.li alad &I, ?.i equal to the corresponding eigenvaiue. Similarl!; the 
p37:@- --_ I?,.., M> a!re set equal to the first excited state. The starting values for the 
off-diagonal multipliers Pi>, are zero. 

Hn the event that difficulty is encountered in converging from the hydrogcnx 
solutions, one can multiply the ignored terms by a tracking parameter E and increase 
E in several steps from 0 to 1 with the converged solution for one value of E serGag 
as the starting vector for the next. In the Li calculation which follows one such 
intermediate step was required (E = 0,0.5, 1.0). Also solutions for one atom can. 
be tracked into solutions for a larger atom by means of turning on th.e additional 
Coulomb and exchange interactions in a number of steps with the addi!:ionrl 
orbitals starting from appropriate hydrogenic functions. 

6. RE~TJLT~ FOR THE ls22s CONFIGURATION OF Ii 

Contirming with the Li example we present results for the total HF energy and 
the Lagrange multipliers. The result for the HF energy appears in Table E where 
the Richardson i&extrapolation procedure [lo] has been carried out to determine 
the limiting value of the HF energy as h + 0. The various extrapolants are arranged 
in a Nevihe table [ll] where the accuracy of the extrapoianss improves from left 
to right, and consequently the element on the far right of the table is the m.ost 
accurate approximation. The other elements are useful in giving an estimate of the 
accuracy. The results for A,, , A,, , and A,, are similarly presented. 

For these double-precision calculations the tolerance for the C&RI (see Eq. (14)) 
was set at 10~~~. Quadratic convergence is obtained. IIn a typical sequence of 
generalized Newton-Raphson iterations the convergence criterion (14) takes on 
values of the order of loo, 10-3, 1O-7, and 10-l”. The SCF convergence criterion 
used was that the largest absolute change in any of the PIK from one SCF ikeratioz 
to the next be less than lo-lo. 

With 105 intervals in the mesh the converged value of A,, turns out to be 
-0.5306684623 x lo-lo. Since this value is of the order of the tolerance of the 
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TABLE I 

Neville Tables for Hartree-Fock Energy and X Multipliers for Li 

HF energya 

M = number 

of intervals 

in mesh 

It = mesh” 

spacing 0th order 1st order 2nd order 3rd order 

= l/(aM) extrapolant extrapolant extrapolant extrapolant 

45 0.02002002002 -7.432260308 

6.5 0.01386001386 -7.432516868 
-7.432753021 

-7.432750941 

85 0.01059883413 -7.432614303 
-7.432751524 

-7.432750922 
-7.432750918 

105 0.00858000858 -7.432661471 
-7.432751153 

45 0.02002002002 -2.484760980 

65 0.01386001386 -2.485758644 
-2.486676948 

-2.486675785 

85 0.01059883413 -2.486139599 
-2.486676111 

-2.486675642 
-2.486675610 

105 0.00858000858 -2.486324420 
-2.486675822 

45 0.02002002002 -2.466734377 

65 0.01386001386 -2.467758430 
-2.468701023 

-2.468699916 

85 0.01059883413 -2.468149487 
-2.468700227 

- 2.468699755 
-2.468699720 

105 0.00858000858 -2.468339211 
-2.468699936 

h 33 

45 0.02002002002 -0.1969356494 

65 0.01386001386 -0.1966395233 
-0.1963669527 

-0.1963672406 

85 0.01059883413 -0.1965264312 
-0.1963671599 -0.1963672172 

-0.1963671979 
-0.1963672212 

105 0.00858000858 -0.1964715481 

a HF energy is in a.u. 

b a = 1.11 (see Eq. (5)). 
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calculation, and since roundoff error is also of this order, an accurate P-extra- 
polation is not possible. 

It is well known that with the two Is radial functions PI and P, not constrained 
to be equal, the I-IF equations are invariant under a unitary transformation among 
spin-orbitahs of the same spin (in this case P, and P,) and furthermore, since the 
x matrix is Hermitian; there exists a representation in which it is diagonal. it is 
clear that within the given tolerance the algorithm has converged upon this diagonal 
solution. That this is certainly the case is evident from the fact that when the set of 
finite difference equations (25)-(21) are satisfied within the tolerance of LO-‘-” we 
isave an accurate solution of the HF equations. But as a check a second cakuiation 
was performed where h,, was assumed to be zero. For this calculation the term 
containing Py+l in (19) (PF+l corresponds to h,& as welf as the orthogonaliry 
condition between P, and P, ~ Eq. (21), were eliminated from the system. PI and P, 
still turn out to be orthogonal without the constrainr (22) because of the Hermitian 
property of the HF equations in the diagonal representation. The results of tins two 
caiculations are identical within the given tolerance. 

The fact that the solution of the ELF equations is unique only within a unitary 
transformation can lead to numerical instabilities with conventional methods af 
solution. For this reason one is usually content to assume the diagonal representa- 
tion (even in cases where it does not legitimately exist, e.g. open shells with two 
electroils of opposite spin in each orbital). We note that En the present calcuiaticc 
no such numerical instabilities occurred, even Though zhe solution. was net 
unique. 

It might be asked if the solution is not unique why did the algorithm converge 
on the parricular diagonal solution? We note that the GXRI works on one radi.a2 
function at a time, holding the others constant, and therefore at each stage in a 
SCF iteration the solution is unique. Also the results of one SCF iteration uniquel_y 
determine the results of the next (within tolerance). Thus7 the only question Is 
whether the lack of a unique solution causes the SCF sequence to diverge, and 
we see at least in the present calculation that it does not. Which one of the non- 
unique solutions is finally converged upon is determined by the starting approxirna- 
tion. 4~ the present calculation X,, was started at zero, and within the given tolerance 

‘The method certainly does not depend upon including the nondiaacr-i c1 s ia* 
multipliers and the associated orthogonality conditions in the system of finite 
difftrence equations. They have been included ia the L.i example only to presem 
the algorithm in full generality. All that is required is that the number of finite- 
difference equations must equal the number of unknowns P,“. 

Finally we give an indication of the computing time requirements for the method. 
n an IBM X0/44 computer in double precision for Li with 85 intervals in the 

mesh, 0.36 set were required per spin-orbital per SCF iteration. Starting from 
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hydrogenic orbitals 17 SCF iterations were required to achieve convergence to a 
tolerance of lo-lo, independent of the number of mesh points in the range 45-105. 
It is difficult to compare with other methods since this information is not available 
in the literature for our particular example. 

It should be noted that once a solution has been obtained for one mesh spacing, 
solutions for other mesh spacings can be obtained rapidly in one or two iterations 
from a linearly interpolated starting vector, so the Richardson extrapolation 
process does not require very much extra computing time. Also the use of accelera- 
tion parameters to improve SCF convergence can be incorporated into the 
method. 

Besides the calculation of the 1~~2s configuration of Li presented, calculations of 
the excited lsz2p, lsz3s, ls23y, and ls”3d configurations have been performed. 
Also a calculation of the closed-shell ls22sz configuration of Be in the diagonal 
representation has been performed. 

7. CONCLUSIONS 

The GNRI in conjunction with the SCF iteration is a relatively simple and 
efficient method for obtaining accurate numerical solutions of the atomic HF 
equations. The computer storage requirements are no greater than conventional 
methods. Although calculations have been performed to date only for Li and Be, 
there is no reason why the algorithm could not compete favorably with conventional 
methods in handling large atoms. 

The chief advantage of the present finite difference Newton-Raphson algorithm 
over conventional methods lies in the treatment of the split boundary conditions. 
Where conventional methods incorporate rather artful procedures for translating 
a mismatch in the inward and outward integrations into new estimates of the 
values of multipliers and initial slopes, the present algorithm includes the split 
boundary conditions and the multipliers in the system of finite-difference equations, 
and the problem is solved universally rather than by a combersome process of 
fitting together the various parts. Consequently the uninitiated should find the 
present algorithm much easier to apply. 

APPENDIX 

As an illustration of the form of the Jacobian matrix encountered using SCF 
techniques we give the example of the Jacobian matrix for the 2s orbital of Li as 
derived from Eqs. (19) (20), and (21). 
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Jkj = g$, 
s 

1 3 
’ I, - kh(1 - akh)3 

+ (1 - akh)-a y ((Qlz)’ + (QiE)“) 
7=1 

x (1 - alIz)-” (l - aqh) - (1 - a/ch)-4 p,“, 
4 

j = k = I,..., M - i, 

1 -- 
%2 ’ 

lk-jl= 1 j, k = I,.., M - I, 

= -(I - al&j-” Pyk, j = M, k = l,,.., M - 1, 

= 2(1 - a$-” P,j, k = AI, j = I,..., M - I, 

= --(I - akh)-” Qlk, j = M + 1; k = I,..., M - 1, 

= (1 - ajh)-* Qlj, k=Mfl, j=l,... TM-lI, 

= 0, for all other k, j not included in any of the above 

In matrix form J is the following, 

All Jacobian matrices encountered are of this form, though the number of nonzero 
columns and rows changes, depending on the number of orthogonality conditions 
associated with the spin-orbital under consideration. 

We will outline the rapid solution of the GNRI equation (12) that is possible if 
J is of the form given by (A-2). 

First, omitting the subscript 01, let us rewrite Eq. (12) as 

where the vector A is defined by 

A E p(n) - p(n+l! 
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Once (A-3) is solved for a, the vector P(“+l) is directly obtained since P(“) is already 
known. Next, we perform the following partitions. 

where A is an (M - 1) x (M - 1) tridiagonal matrix, B is a general (44 - 1) x 2 
matrix and C is a general 2 x (M - 1) matrix. Furthermore, we let 

and 

where LI, and F1 are vectors of length M - 1 while a, and F2 are vectors of 
length 2. Equation A-3 now becomes the following: 

(A-7) 

or equivalently it can be expressed as two matrix equations as follows: 

CA, = F, , (A-8) 

AA, + BA, = F, . (A-9) 

From (A-8) and (A-9) we obtain directly that 

CA-lBA, = CA-lF, - F, (A-10) 

and 

AA, = F1 - BA, . (A-l 1) 

Equations (A-10) and (A-11) are solved in the following way. First, we obtain 
A-lB by defining the following relationships [12]: 

IV1 3 A;,IA,, ; Wj G (Ajj - Ajj-lWj-l)-l Ajj+l, j = 2 ,..ey M - 1, (A-12) 

G,, E A;;‘Bla ; Gju GE (Ajj - Ajj-lWj-3-1(Bj, - AjjelGj-lE), 

j = 2,..., M - 1; 01 = 1,2, (A-13) 
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which make possible the recursive computation of the components of A-“& 

W1&--l,a = G,w,a ;  (A-‘B)j,, = Gj, -  FTj(A-lB)j+l,a j 

j-M-3 1: -,-..> , Lx = 1,2. (A-14‘; 

In a similar fashion A-lF, in (A-10) is also obtained. By inverting the 2 x 2 matrix 
CA-II3 and multiplying (A-10) through by (CA-lB)-l, we obtain A, . Finailyv by 
the same technique that we used to obtain A-l& we obtain A,[= kl(F, -- BL%,)‘;~ 
and the problem is solved. Note that the matrix A is not actually inverted at an;r 
stage during the solution. Also the number of calculations and storage locations 
for this method of solving Eq. (12) are both proportional to M + I. Thus, il is 
clear how the above partitions greatly reduce the time and storage requirements, 
for without them J would have to be treated as a general square matrix of dimen- 
sion M + 1. The time required for its inversion iyonld then be proportionai to 
(M $ 1jS3 and (A4 + 1)’ storage locations would be required. 
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